The sides of certain triangles are given below. Determine which of them are right triangles.
(i) 9 cm, 16 cm, 18 cm
(ii) 7 cm, 24 cm, 25 cm
(iii) 1.4 cm, 4.8 cm, 5 cm
(iv) 1.6 cm, 3.8 cm, 4 cm
(v) $(a-1) \mathrm{cm}, 2 \sqrt{a} \mathrm{~cm},(a+1) \mathrm{cm}$
For the given triangle to be right-angled, the sum of square of the two sides must be equal to the square of the third side.
Here, let the three sides of the triangle be a, b and c.
(i)
a = 9 cm, b = 16 cm and c = 18 cm
Then,
$a^{2}+b^{2}=9^{2}+16^{2}$
$=81+256$
$=337$
$c^{2}=19^{2}$
$=361$
$a^{2}+b^{2} \neq c^{2}$
Thus, the given triangle is not right-angled.
(ii)
a = 7 cm, b = 24 cm and c = 25 cm
Then,
$a^{2}+b^{2}=7^{2}+24^{2}$
$=49+576$
$=625$
$c^{2}=25^{2}$
$=625$
$a^{2}+b^{2}=c^{2}$
Thus, the given triangle is a right-angled.
(iii)
a = 1.4 cm, b = 4.8 cm and c = 5 cm
Then,
$a^{2}+b^{2}=(1.4)^{2}+(4.8)^{2}$
$=1.96+23.04$
$=25$
$c^{2}=5^{2}$
$=25$
$a^{2}+b^{2}=c^{2}$
Thus, the given triangle is right-angled.
(iv)
a = 1.6 cm, b = 3.8cm and c = 4 cm
Then,
$a^{2}+b^{2}=(1.6)^{2}+(3.8)^{2}$
$=2.56+14.44$
$=17$
$c^{2}=4^{2}$
$=16$
$a^{2}+b^{2} \neq c^{2}$
Thus, the given triangle is not right-angled.
(v)
$p=(\mathrm{a}-1) \mathrm{cm}, \quad q=2 \sqrt{a} \mathrm{~cm}$ and $r=(\mathrm{a}+1) \mathrm{cm}$
Then,
$p^{2}+q^{2}=(a-1)^{2}+(2 \sqrt{a})^{2}$
$=a^{2}+1-2 a+4 a$
$=a^{2}+1+2 a$
$=(a+1)^{2}$
$r^{2}=(a+1)^{2}$
$p^{2}+q^{2}=r^{2}$
Thus, the given triangle is right-angled.