Question:
The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?
Solution:
Let x be the side and A be the area of the equilateral triangle at any time t. Then,
$A=\frac{\sqrt{3}}{4} x^{2}$
$\Rightarrow \frac{d A}{d t}=2 \times \frac{\sqrt{3}}{4} x \frac{d x}{d t}$
$\Rightarrow \frac{d A}{d t}=\frac{\sqrt{3}}{2} \times 2 \times 10$
$\Rightarrow \frac{d A}{d t}=10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec}$