The sides of a triangle are in the ratio 5 : 12 : 13 and its perimeter is 150 cm. The area of the triangle is
(a) 375 cm2
(b) 750 cm2
(c) 250 cm2
(d) 500 cm2
(b) $750 \mathrm{~cm}^{2}$
Let the sides of the triangle be 5x cm, 12x cm and 13x cm.
Perimeter = Sum of all sides
or, 150 = 5x + 12x + 13x
or, 30x = 150
or, x = 5
Thus, the sides of the triangle are 5
Now
Let :
$a=25 \mathrm{~cm}, b=60 \mathrm{~cm}$ and $c=65 \mathrm{~cm}$
$s=\frac{150}{2}=75 \mathrm{~cm}$
By Heron's formula, we have :
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{75(75-25)(75-60)(75-65)}$
$=\sqrt{75 \times 50 \times 15 \times 10}$
$=\sqrt{15 \times 5 \times 5 \times 10 \times 15 \times 10}$
$=15 \times 5 \times 10$
$=750 \mathrm{~cm}^{2}$