The shortest distance between the lines

Question:

The shortest distance between the lines

$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and

$\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} \mathrm{is}:$

  1. $2 \sqrt{30}$

  2. $\frac{7}{2} \sqrt{30}$

  3. $3 \sqrt{30}$

  4. 3


Correct Option: , 3

Solution:

$\overrightarrow{A B}=6 \hat{i}+15 \hat{j}+3 \hat{k}$

$\vec{p}=\hat{i}+4 \hat{j}+22 \hat{k}$

$\vec{q}=\hat{i}+\hat{j}+7 \hat{k}$

$\vec{p} \times \vec{q}=\left|\begin{array}{rrr}i & j & k \\ 1 & 4 & 22 \\ 1 & 1 & 7\end{array}\right|=6 \hat{i}+15 \hat{j}-3 \hat{k}$

Shortest distance between the lines is

$=\frac{|\overrightarrow{A B} \cdot(\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|}=\frac{|36+225+9|}{\sqrt{36+225+9}}=3 \sqrt{30}$

Leave a comment