The shortest distance between the lines
$\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0$
$2 x-y+z+3=0$ is :
Correct Option: , 4
Line of intersection of planes
$x+y+z+1=0$ ........(1)
$2 x-y+z+3=0$ ............(2)
eliminate $y$
$3 x+2 z+4=0$
$x=\frac{-2 z-4}{3}$ .........(3)
put in equaiton (1)
$z=-3 y+1$ ..............(4)
from $(3)$ and $(4)$
$\frac{3 x+4}{-2}=-3 y+1=z$
$\frac{x-\left(-\frac{4}{3}\right)}{-\frac{2}{3}}=\frac{y-\frac{1}{3}}{-\frac{1}{3}}=\frac{z-0}{1}$
now shortest distance between skew lines
$\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$
$\frac{x-\left(-\frac{4}{3}\right)}{-\frac{2}{3}}=\frac{y-\left(\frac{1}{3}\right)}{-\frac{1}{3}}=\frac{z-0}{1}$
S.D. $=\left|\frac{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}})}{|\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}}|}\right|$
where $\overrightarrow{\mathrm{a}}=(1,-1,0)$
$\overrightarrow{\mathrm{b}}=\left(-\frac{4}{3}, \frac{1}{3}, 0\right)$
$\overrightarrow{\mathrm{c}}=(0,-1,1)$
$\overrightarrow{\mathrm{d}}=\left(-\frac{2}{3},-\frac{1}{3}, 1\right)$
$\Rightarrow$ S.D $=\frac{1}{\sqrt{3}}$