The shadow of a tower, when the angle of elevation of the sun is 45°, is found to be 10 m longer than when it was 60°. Find the height of the tower.
Let h be height of tower AB and angle of elevation are 45° and 60° are given.
In a triangle OAC, given that AB = 10+x and BC = x
Now we have to find height of tower.
So we use trigonometrical ratios.
In a triangle OAB,
$\Rightarrow \quad \tan A=\frac{O B}{A B}$
$\Rightarrow \tan 45^{\circ}=\frac{O B}{A B}$
$\Rightarrow \quad 1=\frac{h}{10+x}$
$\Rightarrow \quad h=10+x$
Therefore $x=h-10$
Again in a triangle,
$\Rightarrow \quad \tan C=\frac{O B}{B C}$
$\Rightarrow \quad \tan 60^{\circ}=\frac{O B}{B C}$
$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad h=\sqrt{3} x$
Put $x=h-10$
$\Rightarrow \quad h=\sqrt{3}(h-10)$
$\Rightarrow \quad h=\sqrt{3} h-10 \sqrt{3}$
$\Rightarrow \quad 10 \sqrt{3}=h(\sqrt{3}-1)$
$\Rightarrow \quad h=\frac{10 \sqrt{3}}{(\sqrt{3}-1)}$
$\Rightarrow \quad h=\frac{10 \times 1.732}{(1.732-1)}$
$\Rightarrow \quad h=\frac{17.32}{0.372}$
$\Rightarrow \quad h=23.66$
Hence height of tower is $23.66 \mathrm{~m}$.