The shadow of a tower standing on a level ground is found to be 40 m longer when Sun's altitude is 30° than when it was 60°. Find the height of the tower.
Let be the tower of height.given the shadow of tower m. attitude of sun are and. Here we have to find height of tower. Let and .
In $\triangle A C B$
$\Rightarrow \quad \tan C=\frac{A B}{B C}$
$\Rightarrow \quad \tan 60^{\circ}=\frac{h}{x}$
$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \quad x=\frac{h}{\sqrt{3}}$
Again in $\triangle A D B$
$\Rightarrow \quad \tan D=\frac{A B}{D B}$
$\Rightarrow \quad \tan 30^{\circ}=\frac{h}{40+x}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{h}{40+x}$
$\Rightarrow \quad 40+x=\sqrt{3} h$
Put $x=\frac{h}{\sqrt{3}}$
$\Rightarrow \quad 40+\frac{h}{\sqrt{3}}=\sqrt{3} h$
$\Rightarrow \quad 40=\sqrt{3} h-\frac{h}{\sqrt{3}}$
$\Rightarrow \quad 40=\frac{2 h}{\sqrt{3}}$
$\Rightarrow \quad h=20 \sqrt{3}$
Hence height of tower is $20 \sqrt{3} \mathrm{~m}$.