The set of points where f(x) = cos |x| is differentiable, is ____________.
We know
$|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$
$\therefore f(x)=\cos |x|= \begin{cases}\cos x, & x \geq 0 \\ \cos (-x), & x<0\end{cases}$
$\Rightarrow f(x)=\cos |x|= \begin{cases}\cos x, & x \geq 0 \\ \cos x, & x<0\end{cases}$ $[\cos (-\theta)=\cos \theta]$
We know that, cosine function is differentiable in its domain. So, f(x) is differentiable for all x < 0 and x > 0.
Let us check the differentiability of $f(x)=\cos |x|$ at $x=0$.
Now,
$L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$\Rightarrow L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos (-h)-\cos 0}{-h}$
$\Rightarrow L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos h-1}{-h}$
$\Rightarrow L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{-2 \sin ^{2} \frac{h}{2}}{-h}$
$\Rightarrow L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim _{h \rightarrow 0} \sin \frac{h}{2}$
$\Rightarrow L f^{\prime}(0)=1 \times 0$
$\Rightarrow L f^{\prime}(0)=0$
And
$R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$\Rightarrow R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos h-\cos 0}{h}$
$\Rightarrow R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$
$\Rightarrow R f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{-2 \sin ^{2} \frac{h}{2}}{h}$
$\Rightarrow R f^{\prime}(0)=-\lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim _{h \rightarrow 0} \sin \frac{h}{2}$
$\Rightarrow R f^{\prime}(0)=-1 \times 0$
$\Rightarrow R f^{\prime}(0)=0$
$\therefore L f^{\prime}(0)=R f^{\prime}(0)$
So, f(x) is differentiable at x = 0. Thus, the function f(x) is differentiable everywhere.
Hence, the set of points where $f(x)=\cos |x|$ is differentiable is $\mathrm{R}$ (set of real real numbers).
The set of points where f(x) = cos |x| is differentiable, is _____R_____.