Question:
The real valued function $f(\mathrm{x})=\frac{\operatorname{cosec}^{-1} \mathrm{x}}{\sqrt{\mathrm{x}-[\mathrm{x}]}}$, where
$[\mathrm{x}]$ denotes the greatest integer less than or equal to $\mathrm{x}$, is defined for all $\mathrm{x}$ belonging to :
Correct Option: , 2
Solution:
$f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{\{x\}}}$
Domain $\in(-\infty,-1] \cup[1, \infty)$
$\{x\} \neq 0$ so $x \neq$ integers