The real valued function

Question:

The real valued function $f(\mathrm{x})=\frac{\operatorname{cosec}^{-1} \mathrm{x}}{\sqrt{\mathrm{x}-[\mathrm{x}]}}$, where

$[\mathrm{x}]$ denotes the greatest integer less than or equal to $\mathrm{x}$, is defined for all $\mathrm{x}$ belonging to :

 

  1. all reals except integers

  2. all non-integers except the interval $[-1,1]$

  3. all integers except $0,-1,1$

  4. all reals except the Interval $[-1,1]$


Correct Option: , 2

Solution:

$f(x)=\frac{\operatorname{cosec}^{-1} x}{\sqrt{\{x\}}}$

Domain $\in(-\infty,-1] \cup[1, \infty)$

$\{x\} \neq 0$ so $x \neq$ integers

 

Leave a comment