The ratio between the radius of the base and the height of a cylinder is 2 : 3. If the volume of the cylinder is 12936 cm3, then find the radius of the base of the cylinder.
Let the radius of the base and the height of the cylinder be $r$ and $h$, respectively.
We have,
$r: h=2: 3$ i. e. $\frac{r}{h}=\frac{2}{3}$
or $h=\frac{3 r}{2} \quad \ldots$ (i)
As,
Volume of the cylinder $=12936 \mathrm{~cm}^{3}$
$\Rightarrow \pi r^{2} h=12936$
$\Rightarrow \frac{22}{7} \times r^{2} \times \frac{3 r}{2}=12936 \quad[$ Using $(\mathrm{i})]$
$\Rightarrow \frac{33}{7} \times r^{3}=12936$
$\Rightarrow r^{3}=12936 \times \frac{7}{33}$
$\Rightarrow r^{3}=2744$
$\Rightarrow r=\sqrt[3]{2744}$
$\therefore r=14 \mathrm{~cm}$
So, the radius of the base of the cylinder is 14 cm.