The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2.
The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. If the total surface area is 616 cm2, then the volume of the cylinder is
(a) 1078 cm3
(b) 1232 cm3
(c) 1848 cm3
(d) 924 cm3
(a) 1078 cm3
We have:
$\frac{2 \pi r h}{2 \pi r h+2 \pi r^{2}}=\frac{1}{2}$
$\Rightarrow 4 \pi r h=2 \pi r h+2 \pi r^{2}$
$\Rightarrow 2 \pi r h=2 \pi r^{2}$
$\Rightarrow \frac{r}{h}=\frac{1}{1}$
Also, $2 \pi r h+2 \pi r^{2}=616$
$\Rightarrow 2 \pi r^{2}+2 \pi r^{2}=616$
$\Rightarrow 4 \pi r^{2}=616$
$\Rightarrow \pi r^{2}=154$
$\Rightarrow r^{2}=\frac{154}{\pi} \mathrm{cm}^{2}$
$\therefore$ Volume of the cylinder $=\pi r^{2} h$
$=\pi \times \frac{154}{\pi} \times r$
$=154 \times \sqrt{\frac{154 \times 7}{22}}$
$=154 \times 7$
$=1078 \mathrm{~cm}^{3}$