The rate of change of $\sqrt{x^{2}+16}$ with respect to $\frac{x}{x-1}$ at $x=3$ is__________________
Let $u(x)=\sqrt{x^{2}+16}$ and $v(x)=\frac{x}{x-1}$.
$u(x)=\sqrt{x^{2}+16}$
Differentiating both sides with respect to $x$, we get
$\frac{d u}{d x}=\frac{1}{2 \sqrt{x^{2}+16}} \times 2 x=\frac{x}{\sqrt{x^{2}+16}}$
$v(x)=\frac{x}{x-1}$
Differentiating both sides with respect to $x$, we get
$\frac{d v}{d x}=\frac{(x-1) \times 1-x \times 1}{(x-1)^{2}}=-\frac{1}{(x-1)^{2}}$
Now,
Rate of change of $u(x)$ with respect to $v(x)$
$=\frac{d u}{d v}$
$=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$=\frac{\frac{x}{\sqrt{x^{2}+16}}}{-\frac{1}{(x-1)^{2}}}$
$=-\frac{x(x-1)^{2}}{\sqrt{x^{2}+16}}$
∴ Rate of change of u(x) with respect to v(x) at x = 3
$=\left(\frac{d u}{d v}\right)_{x=3}$
$=-\frac{3 \times(3-1)^{2}}{\sqrt{3^{2}+16}}$
$=-\frac{12}{5}$
Thus, the rate of change of $\sqrt{x^{2}+16}$ with respect to $\frac{x}{x-1}$ at $x=3$ is $-\frac{12}{5}$.
The rate of change of $\sqrt{x^{2}+16}$ with respect to $\frac{x}{x-1}$ at $x=3$ is
$-\frac{12}{5}$