The rate constant for the first order decomposition of H2O2 is given by the following equation: log k = 14.34 − 1.25 × 104 K/T
Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes?
Arrhenius equation is given by,
$k=\mathrm{Ae}^{-E_{\alpha} / \mathrm{R} T}$
$\Rightarrow \ln k=\ln \mathrm{A}-\frac{E_{a}}{\mathrm{R} T}$
$\Rightarrow \ln k=\log \mathrm{A}-\frac{E_{a}}{\mathrm{R} T}$
$\Rightarrow \log k=\log \mathrm{A}-\frac{E_{a}}{2.303 \mathrm{RT}}$ ...(i)
The given equation is
$\log k=14.34-1.25 \times 10^{4} \mathrm{~K} / T$ ...(ii)
From equation (i) and (ii), we obtain
$\frac{E_{a}}{2.303 \mathrm{RT}}=\frac{1.25 \times 10^{4} \mathrm{~K}}{T}$
$\Rightarrow E_{o}=1.25 \times 10^{4} \mathrm{~K} \times 2.303 \times \mathrm{R}$
= 1.25 × 104 K × 2.303 × 8.314 J K−1 mol−1
= 239339.3 J mol−1 (approximately)
= 239.34 kJ mol−1
Also, when t1/2 = 256 minutes,
$k=\frac{0.693}{t_{1 / 2}}$
$=\frac{0.693}{256}$
= 2.707 × 10−3 min−1
= 4.51 × 10−5 s−1
It is also given that, log k = 14.34 − 1.25 × 104 K/T
$\Rightarrow \log \left(4.51 \times 10^{-5}\right)=14.34-\frac{1.25 \times 10^{4} \mathrm{~K}}{T}$
$\Rightarrow \log (0.654-05)=14.34-\frac{1.25 \times 10^{4} \mathrm{~K}}{T}
$\Rightarrow T=\frac{1.25 \times 10^{4} \mathrm{~K}}{18.686}$
= 668.95 K
= 669 K (approximately)