Question:
The range of the function $f(x)={ }^{7-x} P_{x-3}$ is
(a) {1, 2, 3, 4, 5}
(b) {1, 2, 3, 4, 5, 6}
(c) {1, 2, 3, 4}
(d) {1, 2, 3}
Solution:
We know that
$7-x>0 ; x-3 \geq 0$ and $7-x \geq x-3$
$\Rightarrow x<7 ; x \geq 3$ and $2 x \leq 10$
$\Rightarrow x<7 ; x \geq 3$ and $x \leq 5$
So, $x=\{3,4,5\}$
Range of $f$
$=\left\{{ }^{(7-3)} P_{(3-3)},{ }^{(7-4)} P_{(4-5)},{ }^{(7-5)} P(5-3)\right\}$
$=\left\{4 P_{0}, 3 P_{1}, 2 P_{2}\right\}$
$=\{1,3,2\}$
$=\{1,2,3\}$
So, the answer is (d).