The range of the function,
$f(x)=\log _{\sqrt{5}}\left(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{3 \pi}{4}-x\right)\right)$
is:
Correct Option: , 4
$\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}$
$\left(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{3 \pi}{4}-x\right)\right)$
$f(x)=\log _{\sqrt{5}}\left[3+2 \cos \left(\frac{\pi}{4}\right) \cos (x)-2 \sin \left(\frac{3 \pi}{4}\right) \sin (x)\right]$
$f(x)=\log _{\sqrt{5}}[3+\sqrt{2}(\cos x-\sin x)]$
Since $-\sqrt{2} \leq \cos x-\sin x \leq \sqrt{2}$
$\Rightarrow \log _{\sqrt{5}}\left[3+\sqrt{2}(-\sqrt{2}) \leq \mathrm{f}(\mathrm{x}) \leq \log _{\sqrt{5}}[3+\sqrt{2}(\sqrt{2})]\right]$
$\Rightarrow \log _{\sqrt{5}}(1) \leq \mathrm{f}(\mathrm{x}) \leq \log _{\sqrt{5}}(5)$
So Range of $f(x)$ is $[0,2]$
Option (4)