Question:
The range of the function $f(x)=\frac{x^{2}-x}{x^{2}+2 x}$ is
(a) R
(b) R − {1}
(c) R − {−1/2, 1}
(d) None of these
Solution:
(c) R − {-1/2,1}
$f(x)=\frac{x^{2}-x}{x^{2}+2 x}$
Let $y=\frac{x^{2}-x}{x^{2}+2 x} \quad[$ Also,$x \neq 0]$
$\Rightarrow y=\frac{x(x-1)}{x(x+2)}$
$\Rightarrow y=\frac{(x-1)}{(x+2)}$
$\Rightarrow x y+2 y=x-1$
$\Rightarrow x=\frac{2 y+1}{1-y}$
Here, $1-y \neq 0$
or, $y \neq 1$
Also, $x \neq 0$
$\Rightarrow \frac{2 y+1}{1-y} \neq 0$
$\Rightarrow y \neq-\frac{1}{2}$
Thus, range $(f)=\mathrm{R}-\left\{-\frac{1}{2}, 1\right\}$.