The range of f(x) = cos [x],

Question:

The range of f(x) = cos [x], for π/2 < x < π/2 is

(a) {−1, 1, 0}

(b) {cos 1, cos 2, 1}

(c) {cos 1, −cos 1, 1}

(d) [−1, 1]

Solution:

(b) {cos 1, cos 2, 1}

Since, $f(x)=\cos [x]$, where $\frac{-\pi}{2}

$-\frac{\pi}{2}

$\Rightarrow-1.57

 

$\Rightarrow[x] \in\{-1,0,1,2\}$

Thus, $\cos [x]=\{\cos (-1), \cos 0, \cos 1, \cos 2\}$

 

Range of $f(x)=\{\cos 1,1, \cos 2\}$

 

Leave a comment