The range of $f(x)=\frac{1}{1-2 \cos x}$ is
(a) [1/3, 1]
(b) [−1, 1/3]
(c) (−∞, −1) ∪ [1/3, ∞)
(d) [−1/3, 1]
We know that −1 ≤ cosx ≤ 1 for all x ∈ R.
Now,
$-1 \leq \cos x \leq 1$
$\Rightarrow-1 \leq-\cos x \leq 1$
$\Rightarrow-2 \leq-2 \cos x \leq 2$
$\Rightarrow-1 \leq 1-2 \cos x \leq 3$ (Adding 1 to each term)
But,
$\cos x \neq \frac{1}{2}$
$\Rightarrow 1-2 \cos x \in[-1,3]-\{0\}$
$\Rightarrow \frac{1}{1-2 \cos x} \in(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$
$\therefore$ Range of $f(x)=(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$
Disclaimer: The range of the function does not matches with either of the given options. The range matches with option (c) if it is given as "(−∞, −1] ∪ [1/3, ∞)".