The radius of the base of a right circular cone of semi-vertical angle α is r.

Question:

The radius of the base of a right circular cone of semi-vertical angle $\alpha$ is $r$. Show that its volume is $\frac{1}{3} \pi r^{3} \cot \alpha$ and curved surface area is $\pi r^{2} \operatorname{cosec} \alpha$.

Solution:

$\sin \alpha=\frac{r}{l}$

$\Rightarrow r \operatorname{cosec} \alpha=l$

$\tan \alpha=\frac{r}{h}$

$\Rightarrow r \cot \alpha=h$

Volume $=\frac{1}{3} \pi r^{2} h$

$=\frac{1}{3} \pi r^{2} \cdot r \cot \alpha$

$=\frac{1}{3} \pi r^{3} \cot \alpha$

Surface area $=\pi r l$

$=\pi r \cdot r \operatorname{cosec} \alpha$

$=\pi r^{2} \operatorname{cosec} \alpha .$

 

Leave a comment