The radionuclide 11C decays according to
${ }_{6}^{11} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+e^{+}+v: \quad \mathrm{T}_{1 / 2}=20.3 \mathrm{~min}$
The maximum energy of the emitted positron is 0.960 MeV.
Given the mass values:
$m\left({ }_{6}^{11} \mathrm{C}\right)=11.011434 \mathrm{u}$ and $m\left({ }_{6}^{11} \mathrm{~B}\right)=11.009305 \mathrm{u}$,
calculate Q and compare it with the maximum energy of the positron emitted
The given nuclear reaction is:
${ }_{6}^{11} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+e^{+}+v$
Half life of ${ }_{6}^{11} \mathrm{C}$ nuclei, $T_{1 / 2}=20.3 \mathrm{~min}$
Atomic mass of $m\left({ }_{6}^{11} \mathrm{C}\right)=11.011434 \mathrm{u}$
Atomic mass of $m\left({ }_{6}^{11} \mathrm{~B}\right)=11.009305 \mathrm{u}$
Maximum energy possessed by the emitted positron = 0.960 MeV
The change in the $Q$-value $(\Delta Q)$ of the nuclear masses of the ${ }_{6}^{11} \mathrm{C}$ nucleus is given as:
$\Delta Q=\left[m^{\prime}\left({ }_{6} \mathrm{C}^{11}\right)-\left[m^{\prime}\left({ }_{5}^{11} \mathrm{~B}\right)+m_{e}\right]\right] c^{2}$ ....(1)
Where,
me = Mass of an electron or positron = 0.000548 u
c = Speed of light
m’ = Respective nuclear masses
If atomic masses are used instead of nuclear masses, then we have to add $6 m_{e}$ in the case of ${ }^{11} \mathrm{C}$ and $5 m_{e}$ in the case of ${ }^{11} \mathrm{~B}$.
Hence, equation (1) reduces to:
$\Delta Q=\left[m\left({ }_{6} \mathrm{C}^{11}\right)-m\left({ }_{5}^{11} \mathrm{~B}\right)-2 m_{e}\right] c^{2}$
Here, $m\left({ }_{6} \mathrm{C}^{11}\right)$ and $m\left({ }_{5}^{11} \mathrm{~B}\right)$ are the atomic masses.
∴ΔQ = [11.011434 − 11.009305 − 2 × 0.000548] c2
= (0.001033 c2) u
But 1 u = 931.5 Mev/c2
∴ΔQ = 0.001033 × 931.5 ≈ 0.962 MeV
The value of Q is almost comparable to the maximum energy of the emitted positron.