Question:
The radii of the ends of a bucket 16 cm height are 20 cm and 8 cm. The curved surface area of the bucket is
(a) 1760 cm2
(b) 2240 cm2
(c) 880 cm2
(d) 3120 cm2
Solution:
Radius of top of bucket r1 = 20 cm
Radius of bottom of bucket r2 = 8 cm
Height of bucket = 16 cm
The curved surface area of bucket
$I=\sqrt{h^{2}+\left(r_{1}+r_{2}\right)^{2}}$
$=\sqrt{16^{2}+(20-8)^{2}}$
$=\sqrt{256+144}$
$I=\sqrt{400}$
$I=20 \mathrm{~cm}$
C.S.A. of bucket
$=\pi(20+8) \times 20$
$=22 \times 80$
$=1760 \mathrm{~cm}^{2}$
Hence, the correct answer is choice (a).