The Q value of a nuclear reaction A + b → C + d is defined by
Q = [ mA+ mb− mC− md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.
(i) ${ }_{1}^{1} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
(ii) ${ }_{6}^{12} \mathrm{C}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He}$
Atomic masses are given to be
$m\left({ }_{1}^{2} \mathrm{H}\right)=2.014102 \mathrm{u}$
$m\left({ }_{1}^{3} \mathrm{H}\right)=3.016049 \mathrm{u}$
$m\left({ }_{6}^{12} \mathrm{C}\right)=12.000000 \mathrm{u}$
$m\left({ }_{10}^{20} \mathrm{Ne}\right)=19.992439 \mathrm{u}$
(i) The given nuclear reaction is:
${ }_{1} \mathrm{H}^{1}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H}$
It is given that:
Atomic mass $m\left({ }_{1}^{1} \mathrm{H}\right)=1.007825 \mathrm{u}$
Atomic mass $m\left({ }_{1}^{3} \mathrm{H}\right)=3.016049 \mathrm{u}$
Atomic mass $m\left({ }_{1}^{2} \mathrm{H}\right)=2.014102 \mathrm{u}$
According to the question, the Q-value of the reaction can be written as:
$Q=\left[m\left({ }_{1}^{1} \mathrm{H}\right)+m\left({ }_{1}^{3} \mathrm{H}\right)-2 m\left({ }_{1}^{2} \mathrm{H}\right)\right] c^{2}$
$=[1.007825+3.016049-2 \times 2.014102] c^{2}$
$Q=\left(-0.00433 c^{2}\right) \mathrm{u}$
But $1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$
$\therefore Q=-0.00433 \times 931.5=-4.0334 \mathrm{MeV}$
The negativeQ-value of the reaction shows that the reaction is endothermic.
(ii) The given nuclear reaction is:
${ }_{6}^{12} \mathrm{C}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{10}^{20} \mathrm{Ne}+{ }_{2}^{4} \mathrm{He}$
It is given that:
Atomic mass of $m\left({ }_{6}^{12} \mathrm{C}\right)=12.0 \mathrm{u}$
Atomic mass of $m\left({ }_{10}^{20} \mathrm{Ne}\right)=19.992439 \mathrm{u}$
Atomic mass of $m\left({ }_{2}^{4} \mathrm{He}\right)=4.002603 \mathrm{u}$
The Q-value of this reaction is given as:
$Q=\left[2 m\left({ }_{6}^{12} \mathrm{C}\right)-m\left({ }_{10}^{20} \mathrm{Ne}\right)-m\left({ }_{2}^{4} \mathrm{He}\right)\right] c^{2}$
$=[2 \times 12.0-19.992439-4.002603] c^{2}$
$=\left(0.004958 c^{2}\right) \mathrm{u}$
$=0.004958 \times 931.5=4.618377 \mathrm{MeV}$
The positive Q-value of the reaction shows that the reaction is exothermic.