Question:
The product of two successive integral multiples of 5 is 300. Determine the multiples.
Solution:
Let the successive integer multiples of 5 be $5 x$, and $5(x+1)$
Then according to question
$5 x \times 5(x+1)=300$
$25\left(x^{2}+x\right)=300$
$x^{2}+x=12$
$x^{2}+x-12=0$
$x^{2}-3 x+4 x-12=0$
$x(x-3)+4(x-3)=0$
$(x-3)(x+4)=0$
Therefore,
$(x-3)=0$
$x=3$
Or
$(x+4)=0$
$x=-4$
When $x=3$ then integer
$5 x=5 \times 3$
$=15$
$5(x+1)=5(3+1)$
$=5 \times 4$
$=20$
And when $x=-4$ then integer
$5 x=5 \times-4$
$=-20$
$5(x+1)=5(-4+1)$
$=5 \times(-3)$
$=-15$
Thus, three consecutive positive integer be 15,20 or $-20,-15$