Question:
The product of the zeros of $x^{3}+4 x^{2}+x-6$ is
(a) $-4$
(b) 4
(c) 6
(d) $-6$
Solution:
Given $\alpha, \beta, \gamma$ be the zeros of the polynomial $f(x)=x^{3}+4 x^{2}+x-6$
Product of the zeros $=\frac{\text { Constant term }}{\text { Coefficient of } x^{3}}=\frac{-(-6)}{1}=6$
The value of Product of the zeros is 6.
Hence, the correct choice is $(\mathrm{c})$