The probability that a

Question:

The probability that a randomly chosen 5 -digit number is made from exactly two digits is :

  1. (1) $\frac{135}{10^{4}}$

  2. (2) $\frac{121}{10^{4}}$

  3. (3) $\frac{150}{10^{4}}$

  4. (4) $\frac{134}{10^{4}}$


Correct Option: 1

Solution:

Total outcomes $=9\left(10^{4}\right)$

Favourable outcomes

$={ }^{9} C_{2}\left(2^{5}-2\right)+{ }^{9} C_{1}\left(2^{4}-1\right)=36(30)+9(15)$

Probability $=\frac{36 \times 30+9 \times 15}{9 \times 10^{4}}=\frac{4 \times 30+15}{10^{4}}=\frac{135}{10^{4}}$

Leave a comment