Question:
The principal argument of i –1097 is ____________.
Solution:
Let $z=i^{-1097}$
$z=\frac{1}{(i)^{1096} \cdot i}$
$=\frac{1}{\left(i^{4}\right)^{274}} \times \frac{1}{i}$
$=\frac{1}{1} \times \frac{1}{i} \quad\left(\because i^{4}=1\right)$
$=\frac{1}{i}$
$=\frac{1}{i} \times \frac{i}{i}$
$z=-i=\cos \left(\frac{\pi}{2}\right)-i \sin \frac{\pi}{2}$
Hence, principle argument is $-\frac{\pi}{2}$.