Question:
The pressure p and the volume v of a gas are connected by the relation pv1.4 = const. Find the percentage error in p corresponding to a decrease of 1/2% in v.
Solution:
We have
$p v^{1.4}=$ constant $=k$ (say)
Taking log on both the sides, we get
$\log \left(p v^{1.4}\right)=\log k$
Differentiating both the sides w.r.t. $x$, we get
$\frac{1}{p} \frac{d p}{d v}+\frac{1.4}{v}=0$
$\Rightarrow \frac{d p}{p}=\frac{-1.4 d v}{v}$
Now, $d p=\frac{d p}{d v} d v=\frac{-1.4 p}{v} d v$
$\Rightarrow \frac{d p}{p} \times 100=-1.4\left(\frac{d v}{v} \times 100\right)=-1.4 \times\left(\frac{-1}{2}\right)=0.7$ $\left[\right.$ Since we are given $\frac{1}{2} \%$ decrease in $\left.v\right]$
Hence, the error in $p$ is $0.7 \%$.