The positive value of $k$ for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots, is
(a) 4
(b) 8
(c) 12
(d) 16
The given quadric equation are $x^{2}+k x+64=0$, and $x^{2}-8 x+k=0$ roots are real.
Then find the value of a.
Here, $x^{2}+k x+64=0$.......(1)
$x^{2}-8 x+k=0 \cdots(2)$
$a_{1}=1, b_{1}=k$ and, $c_{1}=64$
$a_{2}=1, b_{2}=-8$ and,$c_{2}=k$
As we know that $D_{1}=b^{2}-4 a c$
Putting the value of $a_{1}=1, b_{1}=k$ and, $c_{1}=64$
$=(k)^{2}-4 \times 1 \times 64$
$=k^{2}-256$
The given equation will have real and distinct roots, if $D>0$
$k^{2}-256=0$
$k^{2}=256$
$k=\sqrt{256}$
$k=\pm 16$
Therefore, putting the value of $k=16$ in equation (2) we get
$x^{2}-8 x+16=0$
$(x-4)^{2}=0$
$x-4=0$
$x=4$
The value of $k=16$ satisfying to both equations
Thus, the correct answer is $(d)$