The position vector of the point which divides the

Question:

The position vector of the point which divides the join of points $2 \vec{a}-3 \vec{b}$ and $\vec{a}+\vec{b}$ in the ratio $3: 1$ is

(A) $\frac{3 \vec{a}-2 \vec{b}}{2}$

(B) $\frac{7 \vec{a}-8 \vec{b}}{4}$

(C) $\frac{3 \vec{a}}{4}$

(D) $\frac{5 \vec{a}}{4}$

Solution:

The correct option is (D).

The given vectors are in the ratio 3: 1

Sor the

position vector of the required point $c$ which divides the join of the given vectors $\vec{a}$ and $\vec{b}$ is

$\vec{c}=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$

$-\frac{1-(2 \vec{a}-3 \vec{b})+3(\vec{a}+\vec{b})}{3+1}=\frac{2 \vec{a}-3 \vec{b}+3 \vec{a}+3 \vec{b}}{4}$

$=\frac{5 \vec{a}}{4}=\frac{5}{4} \vec{n}$

Leave a comment