The position of a particle as a function of time $t$, is given by

Question:

The position of a particle as a function of time $t$, is given by

$x(t)=a t+b t^{2}-c t^{3}$

where, $a, b$ and $c$ are constants. When the particle attains zero acceleration, then its velocity will be:

  1. (1) $a+\frac{b^{2}}{4 c}$

  2. (2) $a+\frac{b^{2}}{3 c}$

  3. (3) $a+\frac{b^{2}}{c}$

  4. (4) $a+\frac{b^{2}}{2 c}$


Correct Option: , 2

Solution:

(2) $x=a t+b t^{2}-c t^{3}$

Velocity, $v=\frac{d x}{d t}=\frac{d}{d t}\left(a t+b t^{2}+c t^{3}\right)$

$=a+2 b t-3 c t^{2}$

Acceleration, $\frac{d v}{d t}=\frac{d}{d t}\left(a+2 b t-3 c t^{2}\right)$

or $0=2 b-3 c \times 2 t$

$\therefore t=\left(\frac{b}{3 c}\right)$

and $v=a+2 b\left(\frac{b}{3 c}\right)-3 c\left(\frac{b}{3 c}\right)^{2}$

$=a+\frac{b^{2}}{3 c}$

Leave a comment