Question:
The points representing the complex number z for which |z + 1| < |z – 1| lie on the left side of ____________.
Solution:
Given |z + 1| < |z – 1|
Let z = x + iy where x, y ∈R
i. e $|x+i y+1|<|x+i y-1|$
$\Rightarrow|(x+1)+i y|<|(x-1)+i y|$
Squaring both sides, we get
$|(x+1)+i y|^{2}<|(x-1)+i y|^{2}$
i.e $(x+1)^{2}+y^{2}<(x-1)^{2}+y^{2}$
i. e $x^{2}+1+2 x+y^{2}
i. e $2 x<0$
i. e $x<0$
Hence, $|z+1|<|z-1|$ lies on left side of $y$-axis