The point on the curve $y^{2}=4 x$ which is nearest to, the point $(2,1)$ is
(a) $1,2 \sqrt{2}$
(b) $(1,2)$
(c) $(1,-2)$
(d) $(-2,1)$
$(b)(1,2)$
Let the required point be $(x, y)$. Then,
$y^{2}=4 x$
$\Rightarrow x=\frac{y^{2}}{4}$ ......(1)
Now,
$d=\sqrt{(x-2)^{2}+(y-1)^{2}}$]
Squaring both sides, we get
$\Rightarrow d^{2}=(x-2)^{2}+(y-1)^{2}$
$\Rightarrow d^{2}=\left(\frac{y^{2}}{4}-2\right)^{2}+(y-1)^{2}$
$\Rightarrow d^{2}=\frac{y^{4}}{16}+4-y^{2}+y^{2}+1-2 y$ [From eq. (1)]
Now,
$Z=d^{2}=\frac{y^{4}}{16}+4-y^{2}+y^{2}+1-2 y$
$\Rightarrow \frac{d Z}{d y}=\frac{y^{3}}{4}-2 y+2 y-2$
$\Rightarrow \frac{d Z}{d y}=\frac{y^{3}}{4}-2$
$\Rightarrow \frac{y^{3}}{4}-2=0$
$\Rightarrow y^{3}=8$
$\Rightarrow y=2$
Substituting the value of $y$ in $(1)$, we get
$x=1$
Now,
$\frac{d^{2} Z}{d y^{2}}=\frac{3 y^{2}}{4}$
$\Rightarrow \frac{d^{2} Z}{d y^{2}}=\frac{3(2)^{2}}{4}=3>0$
So, the nearest point is $(1,2)$.