The perimeter of a right triangle is 40 cm and its hypotenuse measures 17 cm. Find the area of the triangle.
The perimeter of a right-angled triangle = 40 cm
Therefore , a+b+c= 40 cm
Hypotenuse = 17 cm
Therefore, c = 17 cm
a+b+c= 40 cm
$\Rightarrow a+b+17=40$
$\Rightarrow a+b=23$
$\Rightarrow b=23-a$ ..........(i)
Now, using Pythagoras' theorem, we have:
$a^{2}+b^{2}=c^{2}$
$\Rightarrow a^{2}+(23-a)^{2}=17^{2}$
$\Rightarrow a^{2}+529-46 a+a^{2}=289$
$\Rightarrow 2 a^{2}-46 a+529-289=0$
$\Rightarrow 2 a^{2}-46 a+240=0$
$\Rightarrow a^{2}-23 a+120=0$
$\Rightarrow(a-15)(a-8)=0$
$\Rightarrow a=15$ or $a=8$
Substituting the value of a=15, in equation(i) we get:
b = 23-a
= 23 - 15
= 8 cm
If we had chosen $a=8 \mathrm{~cm}$, then, $b=23-8=15 \mathrm{~cm}$
In any case,
Area of a triangle $=\frac{1}{2} \times$ base $\times$ height
$=\frac{1}{2} \times 8 \times 15$
$=60 \mathrm{~cm}^{2}$