The perimeter of a rhombus is 60 cm. If one of its diagonals is 18 cm long,
find
(i) the length of the other diagonal, and
(ii) the area of the rhombus.
Perimeter of a rhombus = 4a (Here, a is the side of the rhombus.)
$\Rightarrow 60=4 a$
$\Rightarrow a=15 \mathrm{~cm}$
(i) Given:
One of the diagonals is 18 cm long.
$d_{1}=18 \mathrm{~cm}$
Thus, we have:
Side $=\frac{1}{2} \sqrt{d_{1}^{2}+d_{2}^{2}}$
$\Rightarrow 15=\frac{1}{2} \sqrt{18^{2}+d_{2}^{2}}$
$\Rightarrow 30=\sqrt{18^{2}+d_{2}^{2}}$
Squaring both sides, we get:
$\Rightarrow 900=18^{2}+d_{2}^{2}$
$\Rightarrow 900=324+d_{2}^{2}$
$\Rightarrow d_{2}^{2}=576$
$\Rightarrow d_{2}=24 \mathrm{~cm}$
∴ Length of the other diagonal = 24 cm
(ii) Area of the rhombus $=\frac{1}{2} d_{1} \times d_{2}$
$=\frac{1}{2} \times 18 \times 24$
$=216 \mathrm{~cm}^{2}$