The perimeter of a rhombus is 180 cm and one of its diagonals is 72 cm.
Let $A B C D$ be a rhombus whose diagonals $A C$ and $B D$ intersect at a point $O$.
Let the length of the diagonal AC be $72 \mathrm{~cm}$ and the side of the rhombus be $x \mathrm{~cm}$.
$P$ erimeter of the rhombus $=4 x \mathrm{~cm}$
But it is given that the perimeter of the rhombus is $180 \mathrm{~cm}$.
$\therefore 4 x=180$
$\Rightarrow x=\frac{180}{4}$
$\Rightarrow x=45$
Hence, the length of the side of the rhombus is $45 \mathrm{~cm}$.
We know that the diagonals of the rhombus bisect each other at right angles.
$\therefore A O=\frac{1}{2} A C$
$\Rightarrow A O=\left(\frac{1}{2} \times 72\right) \mathrm{cm}$
$\Rightarrow A O=36 \mathrm{~cm}$
From right $\Delta \mathrm{AOB}$, we have :
$B O^{2}=A B^{2}-A O^{2}$
$\Rightarrow B O^{2}=\left\{(45)^{2}-(36)^{2}\right\}$
$\Rightarrow B O^{2}=(2025-1296)$
$\Rightarrow B O^{2}=729$
$\Rightarrow B O=\sqrt{729}$
$\Rightarrow B O=27 \mathrm{~cm}$
$\therefore B D=2 \times B O$
$B D=(2 \times 27) \mathrm{cm}$
$B D=54 \mathrm{~cm}$
Hence, the length of the other diagonal is $54 \mathrm{~cm}$.
Area of the rhombus $=\left(\frac{1}{2} \times 72 \times 54\right) \mathrm{cm}^{2}$
$=1944 \mathrm{~cm}^{2}$