The perimeter of a parallelogram is 140 cm. If one of the sides is longer than the other by 10 cm, find the length of each of its sides.

Question:

The perimeter of a parallelogram is 140 cm. If one of the sides is longer than the other by 10 cm, find the length of each of its sides.

Solution:

Let the lengths of two sides of the parallelogram be $x \mathrm{~cm}$ and $(x+10) \mathrm{cm}$, respectively.

Then, its perimeter $=2[x+(x+10)] \mathrm{cm}$

$=2[x+x+10] \mathrm{cm}$

$=2[2 x+10] \mathrm{cm}$

$=4 x+20 \mathrm{~cm}$

$4 x+20=140$

$\Rightarrow 4 x=140-20$

$\Rightarrow 4 x=120$

$\Rightarrow x=\frac{120}{4}$

$\Rightarrow x=30$

Length of one side $=30 \mathrm{~cm}$

Length of the other side $\Rightarrow(30+10) \mathrm{cm}=40 \mathrm{~cm}$

Leave a comment