The perimeter of a parallelogram is 140 cm. If one of the sides is longer than the other by 10 cm, find the length of each of its sides.
Question:
The perimeter of a parallelogram is 140 cm. If one of the sides is longer than the other by 10 cm, find the length of each of its sides.
Solution:
Let the lengths of two sides of the parallelogram be $x \mathrm{~cm}$ and $(x+10) \mathrm{cm}$, respectively.
Then, its perimeter $=2[x+(x+10)] \mathrm{cm}$
$=2[x+x+10] \mathrm{cm}$
$=2[2 x+10] \mathrm{cm}$
$=4 x+20 \mathrm{~cm}$
$4 x+20=140$
$\Rightarrow 4 x=140-20$
$\Rightarrow 4 x=120$
$\Rightarrow x=\frac{120}{4}$
$\Rightarrow x=30$
Length of one side $=30 \mathrm{~cm}$
Length of the other side $\Rightarrow(30+10) \mathrm{cm}=40 \mathrm{~cm}$