The numbers of pairs $(a, b)$ of real numbers, such that whenever $\alpha$ is a root of the equation $\mathrm{x}^{2}+\mathrm{ax}+\mathrm{b}=0, \alpha^{2}-2$ is also a root of this equation, is :
Correct Option: 1
Consider the equation $x^{2}+a x+b=0$
If has two roots (not necessarily real $\alpha \& \beta$ )
Either $\alpha=\beta$ or $\alpha \neq \beta$
Case (1) If $\alpha=\beta$, then it is repeated root. Given that $\alpha^{2}-2$ is also a root
So, $\alpha=\alpha^{2}-2 \Rightarrow(\alpha+1)(\alpha-2)=0$
$\Rightarrow \alpha=-1$ or $\alpha=2$
When $\alpha=-1$ then $(a, b)=(2,1)$
$\alpha=2$ then $(a, b)=(-4,4)$
Case $(2)$ If $\alpha \neq \beta$ Then
(I) $\alpha=\alpha^{2}-2$ and $\beta=\beta^{2}-2$
Here $(\alpha, \beta)=(2,-1)$ or $(-1,2)$
Hence $(a, b)=(-(\alpha+\beta), \alpha \beta)$
$=(-1,-2)$
(II) $\alpha=\beta^{2}-2$ and $\beta=\alpha^{2}-2$
Then $\alpha-\beta=\beta^{2}-\alpha^{2}=(\beta-\alpha)(\beta+\alpha)$
Since $\alpha \neq \beta$ we get $\alpha+\beta=\beta^{2}+\alpha^{2}-4$
$\alpha+\beta=(\alpha+\beta)^{2}-2 \alpha \beta-4$
Thus $-1=1-2 \alpha \beta-4$ which implies
$\alpha \beta=-1$ Therefore $(a, b)=(-(\alpha+\beta), \alpha \beta)$
$=(1,-1)$
(III) $\alpha=\alpha^{2}-2=\beta^{2}-2$ and $\alpha \neq \beta$
$\Rightarrow \alpha=-\beta$
Thus $\alpha=2, \beta=-2$
$\alpha=-1, \beta=1$
Therefore $(a, b)=(0,-4) \&(0,-1)$
(IV) $\beta=\alpha^{2}-2=\beta^{2}-2$ and $\alpha \neq \beta$ is same as (III)
Therefore we get 6 pairs of $(a, b)$
Which are $(2,1),(-4,4),(-1,-2),(1,-1)(0,-4)$
Option (1)