Question:
The number which exceeds its square by the greatest possible quantity is
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(C) $\frac{3}{4}$
(d) none of these
Solution:
(a) $\frac{1}{2}$
Let the required number be $x$. Then,
$f(x)=x-x^{2}$
$\Rightarrow f^{\prime}(x)=1-2 x$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 1-2 x=0$
$\Rightarrow 2 x=1$
$\Rightarrow x=\frac{1}{2}$
Now,
$f^{\prime \prime}(x)=-2<0$
So, $x=\frac{1}{2}$ is a local maxima.
Hence, the required number is $\frac{1}{2}$.