The number of the real roots of the equation

Question:

The number of the real roots of the equation

$(x+1)^{2}+|x-5|=\frac{27}{4}$ is

 

Solution:

$x \leq 5$

$(x+1)^{2}-(x-5)=\frac{27}{4}$

$(x+1)^{2}-(x+1)-\frac{3}{4}=0$

$x+1=\frac{3}{2},-\frac{1}{2}$

$x=\frac{1}{2},-\frac{3}{2}$

Case-II

$x>5$

$(x+1)+(x-5)=\frac{27}{4}$

$(x+1)^{2}+(x+1)-\frac{51}{4}=0$

$x=\frac{-1 \pm \sqrt{52}}{2}($ rejected as $x>5)$

So, the equation have two real root.

Leave a comment