Question:
The number of solutions of the equation $\log _{4}(x-1)=\log _{2}(x-3)$ is
Solution:
$\log _{4}(x-1)=\log _{2}(x-3)$
$\Rightarrow \frac{1}{2} \log _{2}(x-1)=\log _{2}(x-3)$
$\Rightarrow \log _{2}(x-1)^{1 / 2}=\log _{2}(x-3)$
$\Rightarrow(x-1)^{1 / 2}=x-3$
$\Rightarrow x-1=x^{2}+9-6 x$
$\Rightarrow x^{2}-7 x+10=0$
$\Rightarrow(x-2)(x-5)=0$
$\Rightarrow x=2,5$
But $x \neq 2$ because it is not satisfying the domain of given equation i.e $\log _{2}(x-3) \rightarrow$ its domain $x$ $>3$
finally $x$ is 5
$\therefore$ No. of solutions $=1$.