The number of solutions of the equation $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$,
for $x \in[-1,1]$, and $[x]$ denotes the greatest integer less than or equal to $x$, is:
Correct Option: , 2
Given equation
$\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$
Now, $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]$ is defined if
$-1 \leq x^{2}+\frac{1}{3}<2 \Rightarrow \frac{-4}{3} \leq x^{2}<\frac{5}{3}$
and $\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]$ is defined if
$-1 \leq x^{2}-\frac{2}{3}<2 \Rightarrow \frac{-1}{3} \leq x^{2}<\frac{8}{3}$
So, form (1) and (2) we can conclude
Case - I if $0 \leq \mathrm{x}^{2}<\frac{2}{3}$
$\sin ^{-1}(0)+\cos ^{-1}(-1)=x^{2}$
$\Rightarrow x+\pi=x^{2}$
$\Rightarrow x^{2}=\pi$
but $\pi \notin\left[0, \frac{2}{3}\right)$
$\Rightarrow$ No value of ' $x$ '
Case - II if $\frac{2}{3} \leq \mathrm{x}^{2}<\frac{5}{3}$
$\sin ^{-1}(1)+\cos ^{-1}(0)=x^{2}$
$\Rightarrow \frac{\pi}{2}+\frac{\pi}{2}=x^{2}$
$\Rightarrow x^{2}=\pi$
but $\pi \notin\left[\frac{2}{3}, \frac{5}{3}\right)$
$\Rightarrow$ No value of 'x'
So, number of solutions of the equation is zero.