The number of solution in $[0, \pi / 2]$ of the equation $\cos 3 x \tan 5 x=\sin 7 x$ is
(a) 5
(b) 7
(c) 6
(d) none of these
(c) 6
Given;
$\cos 3 x \tan 5 x=\sin 7 x$
$\Rightarrow \cos (5 x-2 x) \tan 5 x=\sin (5 x+2 x)$
$\Rightarrow \tan 5 x=\frac{\sin (5 x+2 x)}{\cos (5 x-2 x)}$
$\Rightarrow \tan 5 x=\frac{\sin 5 x \cos 2 x+\cos 5 x \sin 2 x}{\cos 5 x \cos 2 x+\sin 5 x \sin 2 x}$
$\Rightarrow \frac{\sin 5 x}{\cos 5 x}=\frac{\sin 5 x \cos 2 x+\cos 5 x \sin 2 x}{\cos 5 x \cos 2 x+\sin 5 x \sin 2 x}$
$\Rightarrow \sin 5 x \cos 5 x \cos 2 x+\sin ^{2} 5 x \sin 2 x=\sin 5 x \cos 5 x \cos 2 x+\cos ^{2} 5 x \sin 2 x$
$\Rightarrow \sin ^{2} 5 x \sin 2 x=\cos ^{2} 5 x \sin 2 x$
$\Rightarrow\left(\sin ^{2} 5 x-\cos ^{2} 5 x\right) \sin 2 x=0$
$\Rightarrow(\sin 5 x-\cos 5 x)(\sin 5 x+\cos 5 x) \sin 2 x=0$
$\Rightarrow \sin 5 x-\cos 5 x=0, \sin 5 x+\cos 5 x=0$ or $\sin 2 x=0$
$\Rightarrow \frac{\sin 5 x}{\cos 5 x}=1, \frac{\sin 5 x}{\cos 5 x}=-1$ or $\sin 2 x=0$
Now,
$\tan 5 x=1$
$\Rightarrow \tan 5 x=\tan \frac{\pi}{4}$
$\Rightarrow 5 x=n \pi+\frac{\pi}{4}, n \in Z$
$\Rightarrow x=\frac{\mathrm{n} \pi}{5}+\frac{\pi}{20}, n \in Z$
$F$ or $n=0,1$ and 2 , the value $s$ of $x$ are $\frac{\pi}{20}, \frac{\pi}{4}$ and $\frac{9 \pi}{20}$, respectively.
Or,
$\tan 5 x=1$
$\Rightarrow \tan 5 x=\tan \frac{3 \pi}{4}$
$\Rightarrow 5 x=n \pi+\frac{3 \pi}{4}, n \in Z$
$\Rightarrow x=\frac{\mathrm{n} \pi}{5}+\frac{3 \pi}{20}, n \in Z$
$F$ or $n=0$ and 1, the value $s$ of $x$ are $\frac{3 \pi}{20}$ and $\frac{7 \pi}{20}$, respectively.
And,
$\sin 2 x=0$
$\Rightarrow \sin 2 x=\sin 0$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi, \quad n \in Z$
$\Rightarrow x=\frac{n \pi}{2}, \quad n \in Z$
$F$ or $n=0$, the value of $x$ is $0 .$
Also, $f$ or the odd multiple of $\frac{\pi}{2}, \tan x$ is not defined.
Hence, there are six solutions.