The number of roots of the equation,

Question:

The number of roots of the equation,

$(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$

in the interval $[0, \pi]$ is equal to :

  1. 3

  2. 4

  3. 8

  4. 2


Correct Option: , 2

Solution:

$(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$

$(81)^{\sin ^{2} x}+\frac{(81)^{1}}{(18)^{\sin ^{2} x}}=30$

$(81)^{\sin ^{2} x}=t$

$t+\frac{81}{t}=30$

$\mathrm{t}^{2}-30 \mathrm{t}+81=0$

$(\mathrm{t}-3)(\mathrm{t}-27)=0$

$(81)^{\sin ^{2} x}=3^{1} \quad$ or $(81)^{\sin ^{2} x}=3^{3}$

$3^{4 \sin ^{2} x}=3^{1} \quad$ or $\quad 3^{4 \sin ^{2} x}=3^{3}$

$\sin ^{2} x=\frac{1}{4}$ or $\quad \sin ^{2} x=\frac{3}{4}$

Leave a comment