Question:
The number of real roots of the equation, $e^{4 x}+e^{3 x}-4 e^{2 x}+e^{x}+1=0$ is:
Correct Option: 1
Solution:
Let $e^{x}=t \in(0, \infty)$
Given equation
$t^{4}+t^{3}-4 t^{2}+t+1=0$
$\Rightarrow t^{2}+t-4+\frac{1}{t}+\frac{1}{t^{2}}=0$
$\Rightarrow\left(t^{2}+\frac{1}{t^{2}}\right)+\left(t+\frac{1}{t}\right)-4=0$
Let $t+\frac{1}{t}=y$
$\left(y^{2}-2\right)+y-4=0 \Rightarrow y^{2}+y-6=0$
$y^{2}+y-6=0 \Rightarrow y=-3,2$
$\Rightarrow y=2 \quad \Rightarrow \quad t+\frac{1}{t}=2$
$\Rightarrow \quad e^{x}+e^{-x}=2$
$x=0$, is the only solution of the equation
Hence, there only one solution of the given equation.