Question:
The number of orbitals with $\mathrm{n}=5, \mathrm{~m}_{1}=+2$ is ______________
(Round off to the Nearest Integer).
Solution:
(3)
For, $\mathrm{n}=5$
$\ell=(0,1,2,3,4)$
If $\ell=0, \mathrm{~m}=0$
$\ell=1, \mathrm{~m}=\{-1,0,+1\}$
$\ell=2, \mathrm{~m}=\{-2,-1,0,+1,+2\}$
$\ell=3, \mathrm{~m}=\{-3,-2,-1,0,+1,+2,+3\}$
$\ell=4, \mathrm{~m}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\}$
$5 \mathrm{~d}, 5 \mathrm{f}$ and $5 \mathrm{~g}$ subshell contain one-one orbital having $\mathrm{m}_{c}=+2$