The number of orbitals

Question:

 with $\mathrm{n}=5, \mathrm{~m}_{1}=+2$ is__________ . (Round off to the Nearest Integer).

Solution:

For, $\mathrm{n}=5$

$\ell=(0,1,2,3,4)$

If $\ell=0, \mathrm{~m}=0$

$\ell=1, \mathrm{~m}=\{-1,0,+1\}$

$\ell=2, \mathrm{~m}=\{-2,-1,0,+1,+2\}$

$\ell=3, \mathrm{~m}=\{-3,-2,-1,0,+1,+2,+3\}$

$\ell=4, \mathrm{~m}=\{-4,-3,-2,-1,0,+1,+2,+3,+4\}$

$5 \mathrm{~d}, 5 \mathrm{f}$ and $5 \mathrm{~g}$ subshell contain one-one orbital having $\mathrm{m}_{\ell}=+2$

Leave a comment