Question:
The number of integral values of $m$ for which the equation
$\left(1+\mathrm{m}^{2}\right) \mathrm{x}^{2}-2(1+3 \mathrm{~m}) \mathrm{x}+(1+8 \mathrm{~m})=0$
has no real root is :
Correct Option: 1
Solution:
$D<0$
$4(1+3 m)^{2}-4\left(1+m^{2}\right)(1+8 m)<0$
$\Rightarrow \mathrm{m}(2 \mathrm{~m}-1)^{2}>0 \Rightarrow \mathrm{m}>0$