The number of all

Question:

The number of all $3 \times 3$ matrices $A$, with enteries from the set $\{-1,0,1\}$ such that the sum of the diagonal elements of $A A^{T}$ is 3, is________.

Solution:

Let $\mathrm{A}=\left[a_{\mathrm{ii}}\right]_{3 \times 3}$

It is given that sum of diagonal elements of $\mathrm{AA}^{\mathrm{T}}$ is 3

i.e., $\operatorname{tr}\left(\mathrm{AA}^{\mathrm{T}}\right)=3$

$a_{11}^{2}+a_{12}^{2}+a_{13}^{2}+a_{21}^{2}+\ldots . .+a_{33}^{2}=3$

Possible cases are

$\left.\begin{array}{ll}0,0,0,0,0,0,1,1,1 & \rightarrow 1 \\ 0,0,0,0,0,0,-1,-1,-1 & \rightarrow 1 \\ 0,0,0,0,0,0,1,1,-1 & \rightarrow 3 \\ 0,0,0,0,0,0,-1,1,-1 & \rightarrow 3\end{array}\right\}^{9} C_{6} \times 8=84 \times 8=672$

Leave a comment