The normal to the curve $x^{2}=4 y$ passing $(1,2)$ is
(A) x + y = 3
(B) x − y = 3
(C) x + y = 1
(D) x − y = 1
The equation of the given curve is $x^{2}=4 y$.
Differentiating with respect to x, we have:
$2 x=4 \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{2}$
The slope of the normal to the given curve at point (h, k) is given by,
$\frac{-1}{\left.\frac{d y}{d x}\right]_{(h, k)}}=-\frac{2}{h}$
∴Equation of the normal at point (h, k) is given as:
$y-k=\frac{-2}{h}(x-h)$
Now, it is given that the normal passes through the point (1, 2).
Therefore, we have:
$2-k=\frac{-2}{h}(1-h)$ or $k=2+\frac{2}{h}(1-h)$
Since $(h, k)$ lies on the curve $x^{2}=4 y$, we have $h^{2}=4 k$.
$\Rightarrow k=\frac{h^{2}}{4}$
From equation (i), we have:
$\frac{h^{2}}{4}=2+\frac{2}{h}(1-h)$
$\Rightarrow \frac{h^{3}}{4}=2 h+2-2 h=2$
$\Rightarrow h^{3}=8$
$\Rightarrow h=2$
$\therefore k=\frac{h^{2}}{4} \Rightarrow k=1$
Hence, the equation of the normal is given as:
$\Rightarrow y-1=\frac{-2}{2}(x-2)$
$\Rightarrow y-1=-(x-2)$
$\Rightarrow x+y=3$
The correct answer is A.