The multiplicative inverse of (1 + i) is

Question:

The multiplicative inverse of (1 + i) is ____________.

Solution:

For z = 1 + i

Let us suppose multiplicative inverse of 1 + i is ib

then (1 + i) (ib) = 1

i.e ib ai i2= 1

i.e ib ia – = 1

i.e $a-b+i(a+b)=1+i 0$

On comparing, real and imaginary part, we get

a – = 1 and = 0

i.e – b  = 1 and a = – b

i.e = 1

i. e $a=\frac{1}{2}$

$b=-\frac{1}{2}$

i.e multiplicative inverse of $1+i$ is $\frac{1}{2}-\frac{i}{2}$

Leave a comment